

Burgenland

Bildung im Herzen Europas.

Jürgen Krail

ENEREED

Sustainable ENErgy Conversion from REED Biomass Overview of laboratory and field test results

Reed as a Renewable Resource 2013; Greifswald

Lake Neusiedl Facts and framework

⇒ Lake Neusiedl – reed belt

- ⇒ Total area lake
- ⇒ Total area reed belt
- ⇒ Biomass potential ^[1]
 (Austria, except National park)
- ⇒ Vegetation density [1]

⇒ Nature conservation programms

- ⇒ National park Neusiedler See Seewinkel
- ⇒ EU Natura 2000 Landscape protection programm
- ⇒ UNESCO World heritage site
- ⇒ UNESCO Ramsar convention on wetlands

Management of ressources

- \Rightarrow Harvesting of reed for construction material (<10% of area)
- ⇒ No utilisation of fully grown reed at present

[1] Gamauf (2000): Satellitenbildauswertung des Schilfgürtels am Neusiedlersee zur Ermittlung von Rohstoffpotenzialen.

32,000 ha 18,000 ha

- 84,000 t_(db)
- 5 23 t_(db)/ha

(Google Maps 2009), modified

2

Fachhochschul Studiengänge

Aims of the project ENEREED Working schedule

Fachhochschul Studiengänge

Burgenland

3

ENEREED - Sustainable Energy Conversion from Reed Biomass – RRR 2013, Greifswald

Laboratory and field tests Investigated conversion paths

Fachhochschul Studiengänge

Fuel properties of reed Qualitative comparison

	Common		Woody		Straw ^{3,}		Grain		Grain ^{3,}		Grasses ^{3,}	
	Reed ^{1,}		biomass ^{3,}				whole					
							crops ^{3,}					
Ultimate analysis (dry mass)												
C- Content [%]	45.48	[7]	$\uparrow\uparrow$	[113]	\leftrightarrow	[128]	\downarrow	[60]	$\downarrow\downarrow$	[65]	\leftrightarrow	[128]
H- Content [%]	5.84	[7]	$\uparrow\uparrow$	[76]	1	[112]	$\uparrow\uparrow$	[57]	$\uparrow\uparrow$	[55]	$\uparrow\uparrow$	[158]
O- Content ^{2,} [%]	40.52	[7]	↑	[-]	\downarrow	[-]	$\uparrow\uparrow$	[-]	$\uparrow\uparrow$	[-]	$\downarrow\downarrow$	[-]
N- Content [%]	0.47	[7]	$\downarrow\downarrow$	[133]	\downarrow	[146]	$\uparrow\uparrow$	[66]	$\uparrow\uparrow$	[94]	1	[204]
S- Content [%]	0.07	[7]	\downarrow	[119]	1	[141]	$\uparrow\uparrow$	[62]	$\uparrow\uparrow$	[66]	$\uparrow\uparrow$	[173]
Cl- Content [%]	0.15	[7]	$\downarrow\downarrow$	[122]	$\uparrow\uparrow$	[116]	\downarrow	[56]	$\downarrow\downarrow$	[55]	$\uparrow\uparrow$	[116]
Proximate analysis (dry mass)												
Ash- Content [%]	7.47	[7]	$\downarrow\downarrow$	[120]	\downarrow	[145]	$\downarrow\downarrow$	[67]	$\downarrow\downarrow$	[64]	\downarrow	[201]
Volatiles [%]	76.98	[7]	↑	[86]	\downarrow	[76]	\leftrightarrow	[52]	$\uparrow\uparrow$	[49]	$\downarrow\downarrow$	[159]
Lower heating value H _{u,p,wf} [MJ/kg]	16.38	[7]	$\uparrow\uparrow$	[115]	$\downarrow\downarrow$	[126]	$\downarrow\downarrow$	[58]	$\downarrow\downarrow$	[68]	$\downarrow\downarrow$	[218]
Ash behaviour												
Sintering temperature SIT [°C]	1409	[7]	\downarrow	[29]	$\downarrow\downarrow$	[48]	$\downarrow \downarrow$	[19]	$\downarrow\downarrow$	[13]	$\downarrow\downarrow$	[50]
Softening temperature SOT [°C]	>1500	[7]	\rightarrow	[34]	$\downarrow\downarrow$	[59]	$\downarrow \downarrow$	[19]	$\downarrow\downarrow$	[14]	$\downarrow\downarrow$	[62]
↔ Basic value / equal to												
$\downarrow \uparrow Value lower (\downarrow) / higher (\uparrow) than basic value (basic value inside the typical range)$												
$\downarrow\downarrow\uparrow\uparrow\uparrow$ Value much lower ($\downarrow\downarrow$) / much higher ($\uparrow\uparrow$) than basic value (basic value outside of the typical range)												
^{1,} Based on a single sample – further analyses are required												
^{2,} Calculated value as residual value (100% minus average content ash, C, H, N, K)												
^{3,} Analyses from (Hartmann et al. 2000)												
[###] Number of analysed samples												

Pelletizing lab scale plant Experimental setup

Fachhochschul Studiengänge

Burgenland

⇒ Aim: Influence of conditioning, additives and pelletizing variables (die geometry – press ratio) to pellets quality

ENEREED - Sustainable Energy Conversion from Reed Biomass – RRR 2013, Greifswald

Pelletizing lab scale plant Results

Fachhochschul Studiengänge

Burgenland

- ⇒ Reed is suitable for pelletizing under certain conditions
- Rather high water content required
- ⇒ High press ratio improves pellets quality
- ⇒ Additive rye flour and soy pulp improves pellets quality
- ⇒ Limits of EN 14961-6^[1] for mechanical durability & bulk density can be reached

[1] EN 14961-6 (2012): Solid biofuels - Fuel specifications and classes: Non-woody pellets for non-industrial use.

Thermal conversion small scale plant Experimental setup

Fachhochschul Studiengänge

Burgenland

⇒ Combustion experiments in domestic wood-chip boiler

- ⇒ Boiler nominal heat output 80kW with moving grate
- ⇒ Experiments with reed-/wood pellets in different mixtures, compared with wood chips
- \Rightarrow Boiler testing according to EN303-5^[1] at boiler test stand

[1] EN 303-5 (1999): Heating boilers for solid fuels, hand and automatically stocked, nominal heat output of up to 300 kW -Terminology, requirements, testing and marking.

Thermal conversion small scale plant Results

Thermal conversion small scale plant Conclusion

Fachhochschul Studiengänge

Burgenland

⇒ Boiler operation limits

- ⇒ High ash content of reed pellets requires adaption of ash discharging system
- ⇒ Increase of rate of reed in feedstock causes shorter ash discharging interval (=> unsteady conditions)
- ⇒ Rate of reed up to 75% mass portion is useful (criteria boiler efficiency)

⇒ Boiler emissions

⇒ Requirements of the federal law "Combustion Plant Regulation" (BGBI. II Nr. 312/2011) are met at all test runs

⇒ Measures for improvement

- ⇒ Continuously working ash-discharging system (no batch operation)
 - more steady combustion process
 - lower CO emissions (no CO peaks)
 - increase of boiler heat power output

Thermal conversion large scale plant Experimental setup

Burgenland

⇒ Combustion experiments in district heating plant

- ⇒ Boiler nominal heat output 3MW
- ⇒ Moving grate boiler with screw conveyors, designed for wood chips
- \Rightarrow Experiments with chopped reed / woodchips in different mixtures
- \Rightarrow Water content: reed = 12.5%, wood chips: 44%

Thermal conversion large scale plant Results

F# 17mn

Thermal conversion large scale plant Conclusions

Fachhochschul Studiengänge

Burgenland

⇒ Boiler operation limits

- \Rightarrow 100% chopped reed short run because of feeding problems:
 - feeding problems with hydraulic push floor (designed for wood chips)
 - no operational problems in combustion process during short run

⇒ Boiler emissions

- ⇒ Requirements of emission limits are met with a rate of reed up to 50% (energy based)
 - Combustion Plant Regulation (BGBI. II Nr. 312/2011)
 - Ordinance on Waste Incineration (BGBI. II Nr. 476/2010)

⇒ Measures for improvement

⇒ Modification of feeding system

Industrial conversion - cement industry Experimental setup

Fachhochschul Studiengänge

Burgenland

Off-gas Pre-test 2 h duration test run: Raw-Scenarios of fuel-provision in the calcinator 18.56 t reed-quantity: (incl. the resp. portions of specific fuels in the fuel mix): meal scenario "reference": 100 % Petcoke Aim **Pre-heater** scenario "standard": 78 % ASB^{*)} / 22 % Petcoke • scenario "reed": 54 % Reed / 46 % Petcoke testing of fuel feeding installations *) high caloric plastic fluff Calcinator Main-test 65 % of fuel input Cooler 30 h duration test run: off-gas 252 t reed-quantity: Tertiary air pipe ⇒ Aim Fuel testing of max. substitution-rate with 35 % of fuel input focus on clinker quality **Cement-kiln** Cooling air process stability and emission limit values Cooler Clinker

14

Industrial conversion - cement industry Results

Fachhochschul Studiengänge

Burgenland

	Scenario "reference"	Scenario "	,standard"	Scenario "reed"		
	PetCoke	ASB*)	PetCoke	Reed	PetCoke	
Energy input in calcinator [%]	100%	78.2%	21.8%	57.8%	42.2%	
Water content (as received) [%]	7%	12%	7%	16.7%	7%	
Caloric value [GJ/t _{as received}]	33.0	20.5	33.0	13.7	33.0	
Emission factor [t _{CO2fossil} / t _{fuel as received}]	3.0	1.4	3.0	0	3.0	
CO _{2fossil} emitted [%] (in relation to scenario "reference")	100%	84.	3%	42.2%		

*) high caloric plastic fluff

Industrial conversion - cement industry Conclusions

Fachhochschul Studiengänge

Burgenland

Based on a state-of-the-art plant lay-out including most recent technology:

- \Rightarrow Reed may basically be used as alternative fuel in cement production.
- \Rightarrow The utilization of reed as alternative fuel can reduce fossile CO2-emissions significantly.
- \Rightarrow Reed ash remains in the product stream => material utilisation.

Conclusion and Outlook

Burgenland

⇒ Biomass potential

⇒ Large reed potentials available:
 84,300 t total biomass potential in Austria

⇒ Reed for thermal utilisation

- ⇒ Suitable for a wide range of technologies
- ⇒ Emissions limits met
- ⇒ Limiting factor: ash content

⇒ ToDo's for implementation

- ⇒ Cement industry: no process-related restrictions, focus on fuel handling
- ⇒ Thermal conversion small & large scale plant:
 - long duration tests with monitoring in real plant operation
 - evaluation of maintenance intensity, reliability, risk of corrosion
- ⇒ Small scale plant: boiler- type testing for reed/mixed pellets

Contact Research & Cooperation Partners

Fachhochschul Studiengänge

Burgenland

18